

Assignment 12

13.1

1. Use the set of productions to show that each of these sentences is a valid sentence.

- a) *the happy hare runs*
- b) *the sleepy tortoise runs quickly*
- c) *the tortoise passes the hare*
- d) *the sleepy hare passes the happy tortoise*

3. Show that the *hare runs the sleepy tortoise* is not a valid sentence.

4. Let $G = (V, T, S, P)$ be the phrase-structure grammar with $V = \{0, 1, A, S\}$, $T = \{0, 1\}$, and set of productions P consisting of $S \rightarrow 1S$, $S \rightarrow 00A$, $A \rightarrow 0A$, and $A \rightarrow 0$.

- a) Show that 111000 belongs to the language generated by G .
- b) Show that 11001 does not belong to the language generated by G .
- c) What is the language generated by G ?

6. Let $V = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set P of productions consists of

- a) $S \rightarrow AB$, $A \rightarrow ab$, $B \rightarrow bb$.
- b) $S \rightarrow AB$, $S \rightarrow aA$, $A \rightarrow a$, $B \rightarrow ba$.
- c) $S \rightarrow AB$, $S \rightarrow AA$, $A \rightarrow aB$, $A \rightarrow ab$, $B \rightarrow b$.
- d) $S \rightarrow AA$, $S \rightarrow B$, $A \rightarrow aaA$, $A \rightarrow aa$, $B \rightarrow bB$, $B \rightarrow b$.

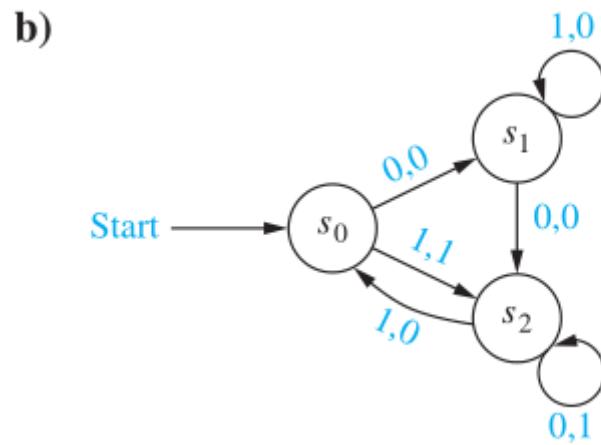
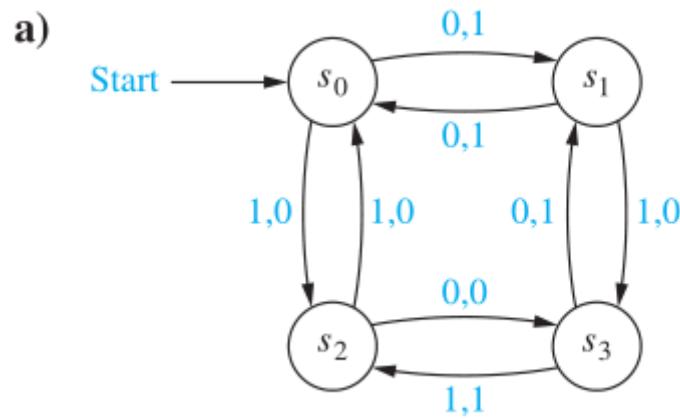
7. Construct a derivation of $0^3 1^3$ using the grammar given in Example 5.

24. Let G be the grammar with $V = \{a, b, c, S\}$; $T = \{a, b, c\}$; starting symbol S ; and productions $S \rightarrow abS$, $S \rightarrow bcS$, $S \rightarrow bbS$, $S \rightarrow a$, and $S \rightarrow cb$. Construct derivation trees for

- a) *bcbba*.
- b) *bbbcbba*.
- c) *bcabbbbbcb*.

13.2

1. Draw the state diagrams for the finite-state machines with these state tables.



a)

State	<i>f</i>		<i>g</i>	
	<i>Input</i>		<i>Input</i>	
	0	1	0	1
s_0	s_1	s_0	0	1
s_1	s_0	s_2	0	1
s_2	s_1	s_1	0	0

b)

State	<i>f</i>		<i>g</i>	
	<i>Input</i>		<i>Input</i>	
	0	1	0	1
s_0	s_1	s_0	0	0
s_1	s_2	s_0	1	1
s_2	s_0	s_3	0	1
s_3	s_1	s_2	1	0

2. Give the state tables for the finite-state machines with these state diagrams.

3. Find the output generated from the input string 01110 for the finite-state machine with the state table in

- a) Exercise 1(a).
- b) Exercise 1(b).

4. Find the output generated from the input string 10001 for the finite-state machine with the state diagram in

- a) Exercise 2(a).
- b) Exercise 2(b).

5. Find the output for each of these input strings when given as input to the finite-state machine in Example 2.

- a) 0111
- b) 11011011
- c) 01010101010

6. Find the output for each of these input strings when given as input to the finite-state machine in Example 3.

- a) 0000
- b) 101010
- c) 11011100010

13.3

1. Let $A = \{0, 11\}$ and $B = \{00, 01\}$. Find each of these sets.

- a) AB
- b) BA
- c) A^2
- d) B^3

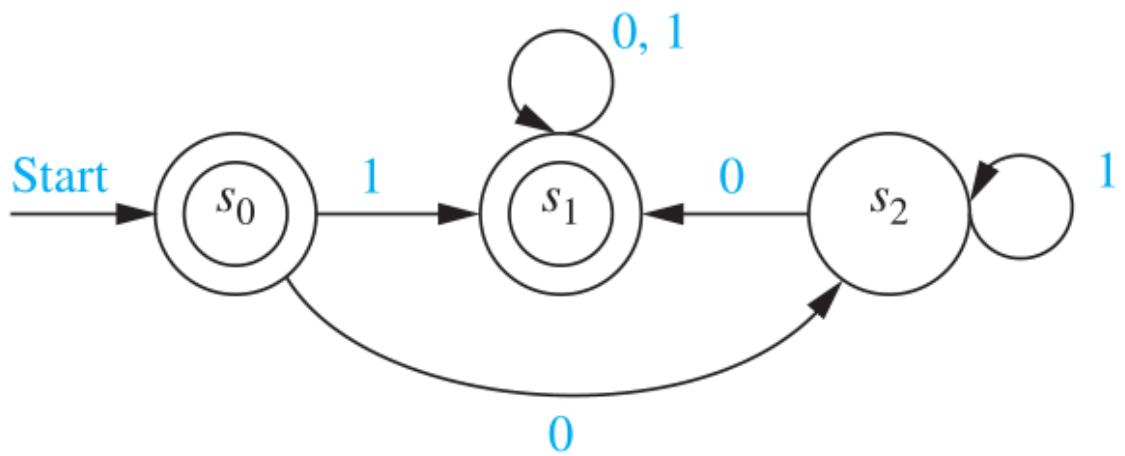
5. Describe the elements of the set A^* for these values of A .

- a) $\{10\}$
- b) $\{111\}$
- c) $\{0, 01\}$
- d) $\{1, 101\}$

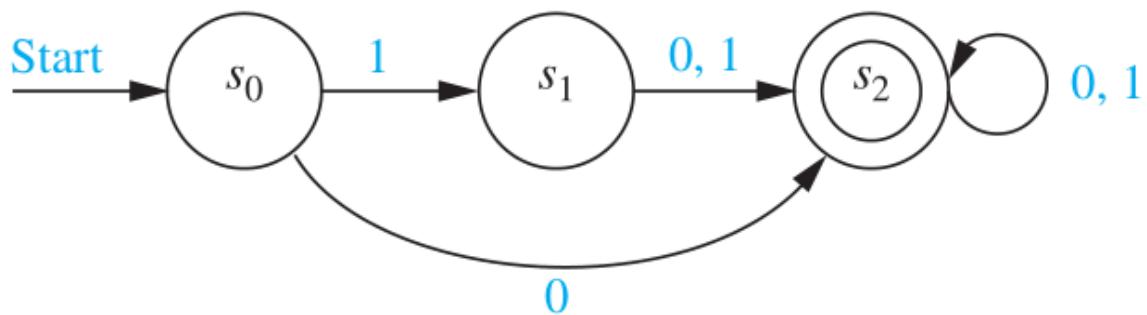
9. Determine whether the string 11101 is in each of these sets.

- a) $\{0, 1\}^*$
- b) $\{1\}^* \{0\}^* \{1\}^*$
- c) $\{11\} \{0\}^* \{01\}$
- d) $\{11\}^* \{01\}^*$
- e) $\{111\}^* \{0\}^* \{1\}$
- f) $\{11, 0\} \{00, 101\}$

11. Determine whether each of these strings is recognized by the deterministic finite-state automaton in Figure 1.

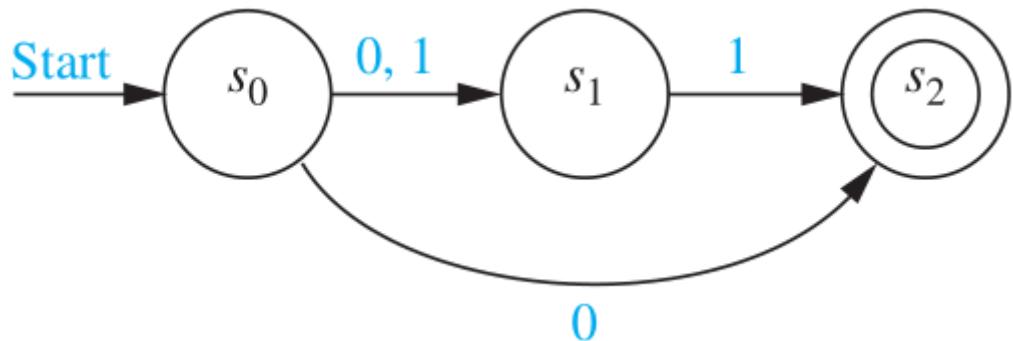

- a) 111
- b) 0011
- c) 1010111
- d) 011011011

12. Determine whether each of these strings is recognized by the deterministic finite-state automaton in Figure 1.


- a) 010
- b) 1101
- c) 1111110
- d) 010101010

In Exercises 16–17 find the language recognized by the given deterministic finite-state automaton.

16.


17.

23. Construct a deterministic finite-state automaton that recognizes the set of all bit strings beginning with 01.

24. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that end with 10.

43. find the language recognized by the given nondeterministic finite-state automaton.

50. Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite-state automaton in Exercise 43.

13.4

1. Describe in words the strings in each of these regular sets.

- a) $1 * 0$
- b) $1 * 00^*$
- c) $111 \cup 001$

2. Describe in words the strings in each of these regular sets.

- a) 001^*
- b) $(01)^*$
- c) $01 \cup 001^*$

4. Determine whether 1011 belongs to each of these regular sets.

- a) 10^*1^*
- b) $0^*(10 \cup 11)^*$
- c) $1(01)^*1^*$

6. Express each of these sets using a regular expression.

- a) the set containing all strings with zero, one, or two bits
- b) the set of strings of two 0s, followed by zero or more 1s, and ending with a 0
- c) the set of strings with every 1 followed by two 0s

13.5

1. Let T be the Turing machine defined by the five tuples: $(s0, 0, s1, 1, R)$, $(s0, 1, s1, 0, R)$, $(s0, B, s1, 0, R)$, $(s1, 0, s2, 1, L)$, $(s1, 1, s1, 0, R)$, and $(s1, B, s2, 0, L)$. For each of these initial tapes, determine the final tape when T halts, assuming that T begins in initial position.

- a)

...	B	B	0	0	1	1	B	B	...
-----	-----	-----	---	---	---	---	-----	-----	-----
- b)

...	B	B	1	0	1	B	B	B	...
-----	-----	-----	---	---	---	-----	-----	-----	-----
- c)

...	B	B	1	1	B	0	1	B	...
-----	-----	-----	---	---	-----	---	---	-----	-----

3. What does the Turing machine described by the five-tuples $(s0, 0, s0, 0, R)$, $(s0, 1, s1, 0, R)$, $(s0, B, s2, B, R)$,

$(s1, 0, s1, 0, R)$, $(s1, 1, s0, 1, R)$, and $(s1, B, s2, B, R)$ do when given

- a) 11 as input?

4.What does the Turing machine described by the five-tuples $(s0, 0,s0, 1,R)$, $(s0, 1,s0, 1,R)$, $(s0,B, s1,B, L)$, $(s1, 1,s2, 1,R)$, do when given

a) 101 as input?

5.What does the Turing machine described by the five-tuples $(s0, 1,s1, 0,R)$, $(s1, 1,s1, 1,R)$, $(s1, 0,s2, 0,R)$, $(s2, 0,s3, 1,L)$, $(s2, 1,s2, 1,R)$, $(s3, 1,s3, 1,L)$, $(s3, 0,s4, 0,L)$, $(s4, 1,s4, 1,L)$, and $(s4, 0,s0, 1,R)$ do when given

a) 11 as input?

Test1

1.The productions of a phrase-structure grammar are $S \rightarrow S1$, $S \rightarrow 0A$, and $A \rightarrow 1$. Find a derivation of

0111.

2.What language is generated by the phrase-structure grammar if the productions are $S \rightarrow S11$, $S \rightarrow \lambda$ where S is the start symbol?

4.Suppose that $A = 1, 11, 01$ and $B = 0, 10$.Find AB and BA .

7.Which strings belong to the set represented by the regular expression $0 * \cup 11$?

Test2

1.What is the language generated by the grammar with productions $S \rightarrow SA$, $S \rightarrow 0$, $A \rightarrow 1A$, and $A \rightarrow 1$, where S is the start symbol?

3.Construct a finite-state machine with output that produces a 1 if and only if the last three input bits read are all 0s.

7.Which strings belong to the regular set represented by the regular expression $(1 * 01 * 0)^*$?